Modeling a Burning Bush With and Without Wind Using a Semiempirical Approach

Brandon T. Andersen^A, Wesley J. Cole^A, Thomas H. Fletcher^A, David R. Weise^B

^AChemical Engineering Department, Brigham Young University, Provo, UT ^BUSDA Forest Service, Pacific Southwest Research Station, Forest Fire Laboratory, Riverside CA

Introduction

- Need to predict fire spread in forest fuels
 - Safety of fire crews
 - Prescribed burning
- What to know:
 - Where the fire will spread.
 - How fast.

Current Predictive Models

Live fuel behaviors

Dead fuel samples

Previous Work

- Over the past six years thousands of live single leaf experiments have been performed on a variety of species
 - This includes over 700
 experimental runs on single
 Manzanita leaves

Manzanita leaves— Arctostaphylos glandulosa, from the California chaparral

Experimental Apparatus

Flat Flame Burner

Gases

- Fuels (H₂, CH₄)
- Oxidizer (Air)
- Inert (N₂)
- Stoichiometry altered to obtain post-flame conditions:
- Temperature ~ 1000°C
- O₂ Concentration ~ 10 mol%
- Flame length ~ 1-3 mm

Repeatable experiment

Experiments

- t_{ig}- Time to ignition
- t_{fd}— Time of flame duration
- t_{fh}– Time to maximum flame height
- FH– Maximum flame height
- θ Flame angle

Flame Profile

Physical Leaf Parameters

Measured Parameters:

- Length
- Width
- Thickness

- Moisture Content
- Mass

Flame Profile Correlations

Scaling Up

The bush model was created to provide a method to transfer fundamental leaf combustion information to large-scale fire prediction

- Creating the bush model simulation:
 - Building physically realistic leaves
 - Arranging leaves in a bush structure
 - Using flame ignition zones for leaf-to-leaf propagation.

Building a Leaf

Best predictor:

Leaf Mass

Follows beta distribution

based on 588 leaf samples measured between 2002 and 2008

Mass Beta Distribution

The Beta Probability Function was used to achieve a realistic distribution.

$$f(x;\alpha,\beta) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{\int_{0}^{1} u^{\alpha-1}(1-u)^{\beta-1} du} \quad \text{where} \quad \alpha = 2.2486$$
$$\beta = 4.9878$$

Cross Correlations

width=1.3175+2.8014.mass

Adjusted $R^2 = 0.607$

thickness=0.6434+1.1596*·mass*-0.2142*·width*

Adjusted $R^2 = 0.580$

length=3.3567+3.8643.mass-0.1645.width-1.0712.thickness

Adjusted $R^2 = 0.466$

Parameters are given a normal distribution with mean calculated using the above correlations and standard deviation equal to the standard error of correlation's fit.

Burning A Virtual Leaf

Bush Structure

- 27 equal subcompartments
- Leaves divided equally
- Trunk space left empty
- Randomly assigned x-yz coordinates
- Vertical or horizontal orientation

Flame Propagation

- Ignitable neighbors are identified for each leaf based on maximum flame dimensions.
- In the presence of wind, flame angles are used to find ignitable neighbors.
- Assume leaves must touch an ignition zone for the entire predicted time to ignition

3-D Simulation Run

- Fuel loading: ~.01 leaves/cm³
- Wind speed: 1 m/s
- Moisture Content: 50%
- Allows visual assessment of flame propagation direction and speed.

Initial Comparison

Conclusions

- Bush model developed to describe leaf-to-leaf flame propagation
 - Based on individual leaf combustion data correlations
- Model comparison with actual bush burning experiments appears reasonable
- Model predictions sensitive to:
 - Leaf properties
 - Bulk density (i.e., leaf spacing)
 - Wind speed

Thank You

• Thanks to BYU and to the USDA Forest Service for providing this opportunity to learn

